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"Abstma- The optimum decoding of component codes in

Block Coded Modulation (BCM) schemes requires the

use of the Log-Likelihood Ratio 0LLR) as the signal

metric. An approximation to the LLR for the Least
Reliable Bit (LRB) in an 8-PSK modulation based on

planar equations with fhted point arithmetic is developed
that is both accurate and easily realizable for practical

BCM schemes. Through an error power analysis and an

example simulation it is shown that the approximation

results in 0.06 dB in degradation over the exact

expression at an E/N o of 10 dB. It is also shown that the

approximation can be realized in combinatorial logic

using roughly 7300 transistors. This compares favorably
to a look up table approach in typical systems.

Index Terms - Log-likelihood ratio, 8-PSK, block coded

modulation, multilevel codes, multistage decoding, soft-
decision metric

decoder from the (i-l) th level. Usually the overall goal is to

"balance" the system by obtaining approximately the same

decoded error probability for each level of decoded bits.

U. 8-PSK LOG-LIKELIHOOD RATIO

In applications such as satellite and mobile
communications, the digital modulation format 8-PSK is

one emerging as a practical choice in bandwidth arid power

limited situations. One example of BCM applied to 8-PSK

uses three component codes, one for each bit in an 8-PSK

symbol. The associated encoder and decoder structures are

illustrated in Figures 1 and 2. In order to obtain a benefit

from multistage decoding the least significant bit in the
constellation must alternate between binary 0 and 1 as the

symbols are defined from 0 to 7n/8 radians [2]. A mapping

that fits this criteria is shown in Figure 3. Each symbol is

defined to have a power normalized to 1.

I. INTRODUCTION

Combined modulation and coding is an efficient method of

conveying information through power and bandwidth

limited channels. Imai-Hirakawa coding schemes [1], also
called block coded modulation (BCM) can achieve Trellis-

Coded Modulation (TCM) performance in a block structure.
They can be an alternative to TCM in systems where a

block format, code flexibility, and decoding speed are

important Though a BCM scheme is generally not

Maximum Likelihood (ML), its structure can offer more

coding for less complexity than TCM in some systems.

8-PSK

Modulator

Eneode_ C0

Figure 1 : General 8-PSK Multilevel Eneoder / Modulator

The BCM structure applies individual codes for each bit in

a modulated symbol. These component codes are denoted

C0, C 1..... Cn. 1 where n is the number of bits in the
symbol. Each component code can be a block or
convolutional code, and they can be decoded with or

without channel information. The error correcting

capability of the i th component code is chosen in accordance

with the channel bit error probability associated with the i th

(i = O, 1..... n-l) bit in the modulated symbol as well as

taking into account information provided by the
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Figure 2 : General 8-PSK Multilevel / Multistage

Decoder / Demodulator
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Figure 3 • 8-PSK Constellation

Multistage decoding requires that the bottom code, C O, is
decoded first. The signal metric for Maximum Likelihood

decoding (MLD) for this code with the given constellation

assignment is the Log-Likelihood Ratio (LLR) [3, 4]. In 8-

PSK, the LLR of the rightmost bit or the Least Reliable Bit

(LRB) being a binary 0 can be expressed as

In I i=O,evenLLR(I,Q) =

L i=O,odd

Where, E s is the energy per symbol, N O is the single sided

noise power spectral density, and d i is the distance from the
(I,Q) point to the ith symbol in the constellation.

This expression contains the likelihood of each of four

symbols that contain a binary 0 in the LRB in the

numerator and the likelihood of each of the four symbols

that contain a binary 1 in the denominator. The LLR as a

function of the in-phase and quadrature component as a

function of the Es/N o equal to 2, 6, and 10 dB is plotted in
Figures 4-6, respectively. Note that in each case the LLR
has been normalized so that the maximum absolute value is

equal to I in each of these plots.

An explicit evaluation of the LLR in real-time is very

undesirable in most practical systems due to the number of

complicated mathematical operations required. For this

reason a look-up table (LUT) approach is used in which the

values of the LLR at a particular Es/N o are calculated off-
line and stored in dedicated memory. This LUT approach is
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Figure 4, LLR at Es/No = 2.0 dB.
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Figure 5, LLR at Es/No = 6.0 dB.
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Figure 6, LLR at Es/No = 10.0 dB.





commonlyusedforbranchmetricsinTCMdecoders.

Visualinspectionof thefigureillustratingtheLLRat an
Es/N o of 10 dB suggests that it can be approximated by a
series of 8 planes. The value of 10 dB is of particular

relevance because it is near the required Es/N o to obtain a
bit-error-rate of 10 -6 commonly required in practical coded

satellite systems. Note that the LLR for the given 8-PSK

constellation is symmetric about the first quadrant. This
results in the observation that the LLR is invariant with

respect to the absolute value function for both the in-phase

(/) and quadrature (Q) channels. Therefore, by replacing I

and Q with their respective absolute values, the problem is

now one of evaluating one of two planar equations as a

function of I and Q. The two remaining planes are

symmetric about the line 1 -- Q. Therefore, if I > Q only one

planar equation at (/, Q ) needs to be evaluated. If I < Q the

planar equation is evaluated at ( Q, I ). The equation of the

LLR planar approximation (LLRPA) can be expressed as,

t× × a bs(l) + _ × a bs(Q)]

LLRPA ( I, Q ) = max ] a × abs( a ) + _3× abs( I )_

Where,

OL
_ = - tan 22.5 °

It is important to remember that these values, whether the

exact LLR or the LLR planar approximation, are the soft

decision metrics to be sent to the decoder. The performance

of the decoder does not depend on the absolute size of the

metrics. Thus, any positive scaling factor that is convenient

can be chosen since multiplying all outputs by some

constant has no effect on the performance of the decoder.
This translates into a freedom of choice for one of the two

values for a and _. The other value is determined by the

ratio between ot and _. If one considers fixed point

arithmetic (integers) ct = 29, and _ = -70 preserves the ratio

quite well. Therefore, the equation of the plane is given by,

29 × abs(1) - 70 × abs(Q)_LLRPA ( 1, Q) = max 29 × abs(Q) - 70 × abs(I) J

The evaluation of the LLRPA as a function of I and Q is

plotted in Figure 7. Unlike the exact values for the LLR,

the planar approximation is not dependent on the EcrN o.

Visually, the plot looks like an increasing good fit to the

LLR as the EsZN o increases.

III. ERROR POWER ANALYSIS

An error power analysis can be used to find the "effective"

SNR degradation due to the use of the LLRPA as compared

i
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Figure 7. Log Likelihood Ratio Planar Approximation.
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Figure 8. Channel model with the LLRPA and the effective

model relative to performing the true LLR computation.

to the exact LLR. The approach finds the power associated
with the LLRPA and considers it as an additional noise

term. This noise is considered as an effective increase in

the channel noise as depicted in Figure 8 (a, b, c). This

analysis is an estimate since both the effect of the non-

lmearity assodated with LLR device and the fact that the

noise term associated with Figure 8b (the LLRPA noise) is

correlated to the channel noise are ignored.





The LLRPA noise in Figure 8b is the error noise of the

approximation. Although this noise is i.i.d, and therefore
white, it is not gaussian. However, since a decoder
effectively adds and subtracts many outputs, the
intermediate values tend toward a gaussian distribution

giving a valid approximate error power analysis.

The relative size of the LLRPA noise term associated with

Figure 8c is estimated by the relative size of the noise term
associated with Figure 8b. In other words, the expected

power in the noise term in Figure 8b is used to compare to
the expected power in the output from the exact LLIL The
error power is given by the expected value of the squared
difference signal. The difference signal is given by:

DS( I, Q) = LLR( I, Q)- 2[LLRPA (I, Q)]

_o-(_'/_)'*'] _ f29abs(I)- 70abs(Q)]

DS(I,Q)= ln[ __(,_,-- J- zmax_29abs(Q)_ 70abs( I);

The coefficient _, is a scaling factor to find the best fit
between the LLR and the LLRPA. The best fit is defined

when the expected value of the squared value is minimized.
As mentioned in section H, a scaling factor on the LLRPA

does not effect the performance of the decoder. The
coefficient L is therefore omitted in any real system, though
it is important in an analysis of error power.

Once the difference signal DS(1,Q) is determined, the
expected value of the squared error is found as;

7

E[DS2 ] = Z P(S,) f_ p,( I, Q)DS2( I, Q)dldQ
_-0

Where P(S/) is the probability that the ith signal was sent,

and pi(1,Q) is the probability of receiving the point (/,Q)
given the ith signal constellation point was transmitted. If
the assumption is made that the eight signals are equally

likely, this simplifies to;

E[DS2 ] = I_ p(I"Q)DS2( I, Q)dldQ

Here p(/,Q) is the probability of receiving the point (I,Q)
given a particular symbol was transmitted. The expected
squared difference signal can then be related to the expected
squared signal or signal power (after the LLR operation).
This is essentially the expected squared output (no

approximation) which is given by;

The ratio

is an estimate of the additional noise to signal ratio due to

the log likelihood ratio planar approximation. An estimate
of the overall signal to noise ratio is obtained by

1
SNR ,.,nw = 1

In dB, this corresponds to a reduction in SNR given by,

SNRa,.,.,_a_,,, , = SN'R_s,,,_t_ , - SNR.,n,.,_._,

IV. AN ILLUSTRATIVE EXAMPLE

As an example, consider an Es/N o of 6. 0 dB as an operating
point. Figure 5 illustrates the LLR for this SNR. The
difference signal (DS) is the difference between the
normalized LLR and the planar approximation (with the

appropriate L). This is shown in Figure 9. Figure 10 is the
squared error signal. Figure 11 is the probability density
function of the received signal for a given symbol

transmitted at Es,'No of 6. 0 dB.

The ratio of the expected squared difference signal and the
expected squared true LLR is an estimate of the additional
effective noise to signal ratio.

For the example, the estimated reduction in the signal to
noise ratio due to the log likelihood ratio planar

approximation is calculated numerically to be 0.216 dB.
This is an estimate of the degradation associated with the
LLRPA.

AS previously mentioned, this is an upper estimate of the
degradation due to the fact that the LLRPA noise is
highly correlated with the channel noise.
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Figure 9. The Difference signal as a function of I & Q.
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Figure 10. The squared difference signal.
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Figure 11. pelf of the received signal at Es/No = 6.0 dB

The accuracy of the approximate degradation can be

assessed through simulation. A realistic simulation example

uses the rate 1/4, 16 state convolutional code given in [3] as

C O, and 8 bits of quantization on both I and Q. One
simulation uses a LLR look up table, while the other

simulation uses the LLRPA equation. Both simulations use

the same PN sequences for both the information and the

noise. The exact LLR look up table performs better for all

operating points (values of channel SNR), but the difference

(as measured in SNR reduction for a given BER or SNR

operating point) is quite small. The following graph
iUustrates the difference between the SNR reductions

computed theoretically, and those found by simulation.
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V. IMPLEMENTATION ANALYSIS

Though it is intuitive that a hardware realization of the

LLRPA would be simpler than the exact LLR, in practice

the exact LLR is computed via a look-up table (LUT). As

such, an implementation analysis is really a comparison
between the hardware realization of the LLRPA and a

sufficient size memory based LUT to find the exact LLR.

This type of comparison is somewhat system dependent,

and the comparison presented here that is based strictly on

an approximate transistor count must be taken within the

system context.

For example, in a demodulator/decoder that is realized

mostly with VLSI technology, coming off the device to an
external LUT and then back on the device has

disadvantages in both the speed of external routing and the

increase of VLSI complexity due to increased I/O

requirements. In this case, the number of transistors

required for both techniques in the context of the particular
VLSI device is a good comparison. Further, systems

implemented with programmable logic such as Field

Programmable Gate Arrays (FPGAs) tend to be constrained
in the amount of memory space available, making the

LLRPA implementation attractive. Alternately, systems





that are not fully realized in VLSI circuitry may benefit
from the potential simplicity of a single memory device to
perform the LLR LUT. The benefits gained from the design
maturity of memory technology may outweigh a specific
implementation of an algorithm such as the LLRPA.

A block diagram of the required processing for the LLRPA
is shown in Figure 13. The block diagram indicates that 8
bit data from an analog to digital converter or digital filter
is first converted to its absolute value. The resulting 7 bit

magnitude values of I and Q are compared to find the
greatest value. If the magnitude of I is greater than or equal
to the magnitude of Q, the I data follows the top leg of
processing and the Q the bottom leg. If the magnitude of Q
is greater than the magnitude of I this is reversed. The

appropriate values are then multiplied by either 29 or 70
and are then subtracted. The result is then divided by 256

to maintain only the 6 most significant bits.

29=0011101

70 = 1_110

Figure 13 :ImplementationBlock Diagramof the LLRPA

The complexity of the LLRPA implementation can be
approximated through a rough estimation of the complexity
in terms of gates for each of these functions. These gate
counts are then converted to an overall estimate of transistor

count. The accuracy of the approximation is subject to the
goals of a particular system in terms of speed, power
consumption, or real estate. Further, the number
representation presented by the upstream hardware and
required by the downstream hardware can also be relevant.

First, in its worst case, the absolute value function requires
a magnitude compare, a select, and then an 8 bit addition or
subtraction,requiring a rough total of 200 gates. Second,
the magnitude comparison and select require about 80
gates. Next, the fixed multiplies can be realized by shifts
and adds resulting in about 250 gates. The final subtractor

requires approximately 200 gates and the divider chooses
the 6 MSBs. Assuming an average of I0 transistors per

gate, the total approximate transistor count is 7300.

For a rough comparison, the LUT table would have a
28X28 ---6.%.L_6memory addresses. If each address contains
6 bits to maintain good quantizafion accuracy this

corresponds to a 65,536 X 6 memory. A Static Random
Access Memory (SRAM) that used 5 _ors per cell
would require 1.97X106 tran_stors. This ignores the
transistors required for column decoders, row decoders, and

read/write circuitry.

These estimates indicate that the LLRPA requires

approximately 270 times fewer tran_ors than the LUT.
Also, the LLRPA computation can be implemented in
parallel to obtain an operating speed increase. In this case,
the number of transistors will increase by the factor of the

speed increase plus the gates required to multiplex and
demultiplex the I/O.

VI. LLR AND THE C 1 CODE

Once the bottom code CO is decoded and re-encoded, the re-
encoded data is used to determine which of two 4-PSK

symbol sets is used for the remaining 2 bits. That is set
{S0,$2,$4,$6} or set {S1,$3,$5,$7} with respect to figure
3. Given one of these two sets, the least reliable bit (which

is really the middle bit now) must also alternate between 0
and 1 as the symbols are encountered moving around the
circumference of the circle. The data impressed onto this

symbol is from the C1 code. For decoding purposes, the
optimum signal metric is the log likelihood ratio for this
constellation. If we consider the set {S0,$2,$4,$6} then the

LLR of the right most bit (middle bit) being a binary 0
verses being a 1 can be expressed as,

r
I =;l:op I

LLR,j,= (I,Q) = In/_-o,,, // rE,,/ b2 /
/ :or, /
L_2.6 J

which can be approximated by,

LLRPA,esx = abs( I )- abs( Q )

We state without proof that error associated with this
approximation is less than that associated with C0. It
should be mentioned that if the set in question is the set

{S1,$3,$5,$7}, then a "rotation" operation will need to be

performed.

VII. CONCLUSIONS

It has been shown that the planar approximation to the log-
likelihood ratio in the least reliable bit of an 8PSK



modulationformatis suitablefor practicalsystems.The
approximationresultsinverylittledegradationin effective
SNR as indicated by an approximate error power analysis
and verified through shnu_on results at relevant operaling

point_ The complexity of the LLRPA discussed as a
comparison between the implementation of H.J_A and an
equivalent memory based LUT evaluating the exact LLR
indicates that the LIJ_A is practical for many systems.

Though appropriate for coded 8PSK, the orthoganafity of

gray coded QPSK and the single dimension of BPSK make
the calculation of the appropriate I.J,R metric simply
equivalent to either the vaine of I or Q. In these cases an
approximation is not necessary. For higher order PSK
systems, a similar approach for a planar approximation can
be taken. Although the decision device to determine the
multipliers for I and Q may be more complex, the required
size LIlT for an exact LLR may get undesirably large. It is
uncertain whether there exists small integer muitipliers
which will preserve a good approximation Finally, due to
the complex decision regions it is unclear whether QAM
modulation schemes could benefit from a similar

approximation technique.
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